Hadoop is a framework of software components, while SQL is a programming language.
For big data tasks, both tools have pros and cons.
Hadoop handles larger data sets but only writes data once. SQL is easier to use but more difficult to scale.
In this comparative guide, you will get a detailed explanation of Hadoop Vs SQL.
Summary
Hadoop vs SQL: A Quick Overview
The essential comparisons between Hadoop and SQL to know are:
- Architecture
Hadoop is defined as an open-source framework that works to distribute data among different servers. Along with this, it processes data parallelly.
At the same time, SQL is a domain-specific programming language that helps handle lots of data in relational databases.
- Skill Level
In comparison with SQL, Hadoop is much harder to learn. But both skills require a decent knowledge of code.
- Pricing
Hadoop and SQL are both open-source that can be used free of cost. But the setup for both is different, as well as maintenance costs.
- Reviews
Hadoop gains a 4.3/5 customer rating on the website G2.com. But SQL is not a product; it’s a programming language. Thus it has no rating on G2.
- Data
Hadoop writes data a single time, while SQL writes it many times. However, both read data multiple times.
To grow business, big data needs to be handled carefully in organizations. But most of the teams in organizations fail to take such complexities in data management.
However, Hadoop and SQL best handle big data most efficiently.Â
In this article, we will compare Hadoop vs SQL based on various factors, customer reviews, and features.
Comparison of Features: Hadoop Vs SQL
Comparative Tour: Level 1
Hadoop
SQL
User Rating on G2.com
4.3/5
–
Pricing
No Cost
No Cost
Language
Java
SQL
Schema Structure
Dynamic
Static
Scaling
Linear
Non Linear
Skill
Advanced
Intermediate
Comparative Tour: Level 2
Feature
Hadoop
SQL
Technology
Modern
Traditional
Volume
Usually in PetaBytes
Usually in GigaBytes
Operations
Storage, processing, retrieval, and pattern extraction from data
Storage, processing, retrieval and pattern mining of data
Fault Tolerance
Hadoop is extremely fault tolerant
SQL has good fault tolerance
Storage
Stores data in the form of key-value pairs, tables, hash maps, etc in distributed systems
Stores structured data in tabular format with fixed schema in the cloud
Scaling
Linear
Non Linear
Providers
Cloudera, Horton work, AWS, etc. provide Hadoop systems
Well-known industry leaders in SQL systems are Microsoft, SAP, Oracle, etc
Data Access
Batch-oriented data access
Interactive and batch-oriented data access
Cost
It is open source and systems can be cost-effectively scaled
It is licensed and costs a fortune to buy a SQL server, moreover, if the system runs out of storage additional charges also emerge
Time
Statements are executed very quickly
SQL syntax is slow when executed in millions of rows
Optimization
It stores data in HDFS and processes through Map Reduce with huge optimization techniques
It does not have any advanced optimization techniques
Structure
Dynamic schema, capable of storing and processing log data, real-time data, images, videos, sensor data, etc.(both structured and unstructured)
Static Schema, capable of storing data(fixed schema) in tabular format only (structured)
Data Update
Write data once, read data multiple times
Read and Write data multiple times
Integrity
Low
High
Interaction
Hadoop uses JDBC (Java Database Connectivity) to communicate with SQL systems to send and receive data
SQL systems can read and write data to Hadoop systems
Hardware
Uses commodity hardware
Uses proprietary hardware
Training
Learning Hadoop for entry-level as well as a seasoned profession is moderately hard
Learning SQL is easy for even entry-level professionals
Understanding Hadoop
Hadoop is an excellent ecosystem of open-source working tools that handle data sets in a distributed manner and solve multiple data management issues.
Four components make Hadoop, Yarn, libraries, and Hadoop Distributed File System(HDFS), which runs on the shelf hardware.
Hadoop has an excellent feature of handling various data sets, making it the first choice among organizations looking to generate insights and valuable data extracted from multiple sources. The tool is best for taking large amounts of data.
The most successful organizations using Hadoop technology are IBM, Amazon Web Services, Hadapt, Pivotal Software, etc.
Understanding SQL
SQL stands for Structured Query Language and is one of the popular open-source domain-specifying programming languages that help efficiently manage and process data in RDBMS (Relational Database Management System) like MySQL, SQL Server, and Oracle, etc. SQL is a declarative language developed by Oracle to generate analytical queries.
A domain-specific language used in computing, structured query language processes data streams in relational data stream management systems in addition to handling data management in relational database management systems.
Simply put, SQL is a standard database language used to create, store, and extract data from relational databases like MySQL, Oracle, SQL Server, and others.
Is Hadoop Better than SQL?
Hadoop performs better than SQL when compared in terms of speed and the capacity to process organized, semi-structured, and unstructured data equally well.
However, Hadoop is not a replacement for SQL; rather, its application relies on specific needs.
Does Hadoop Use SQL?
SQL-on-Hadoop is a class of analytical application tools that combine established SQL-style querying with newer Hadoop data framework elements.
By supporting familiar SQL queries, SQL-on-Hadoop lets a wider group of enterprise developers and business analysts work with Hadoop on commodity computing clusters.
One of the earliest efforts to combine SQL and Hadoop resulted in the Hive data warehouse.
Other tools that help support SQL-on-Hadoop include BigSQL, Drill, Hadapt, Hawq, H-SQL, Impala, JethroData, Polybase, Presto, Shark (Hive on Spark), Spark, Splice Machine, Stinger, and Tez (Hive on Tez).
Hadoop and SQL: Main Differences
In the first shot, we can say that the most significant difference between Hadoop and SQL is how these separate tools handle data.
SQL has limitations in that they can take only limited data sets like relational data and faces lots of struggles with complex sets that come.
Hadoop is excellent for handling such large sets of data as well as unstructured data.
Some of the other differences are listed below:
- Hadoop is linearly scalable whereas SQL is non-linear.
- Hadoop integrates slowly, while SQL integrates fast.
- Hadoop writes once, while SQL writes many times.
- Hadoop possesses a dynamic schema structure, while SQL has a static one.
- Hadoop-batch processing, SQL-Doesn’t support.
- Hadoop is difficult to learn but easy to scale, while SQL is the opposite. In Hadoop, data nodes can easily be added.
The choice of tool mostly depends on the data sets you are looking for management.
If you want to work on extensive data collection, choose Hadoop. Whereas if you don’t want to bother yourself with the complexities of advanced data management, you can select SQL.
Hadoop and SQL: Training and Support
Let’s dive into some trainings and supports provided by these two, one being framework and the other being a programming language:
Hadoop
- Â Mailing Lists
- Â Documentation
- Â Community
- Â Apache Software Foundation(Its parts)
SQL
- There is no official training for SQL, but multiple modules and training lectures are available over the internet.
Hadoop and SQL: Pricing
Taking in account, SQL and Hadop as open-source platforms are considerably less expensive than a proprietary solution.
In an enterprise setting, open source solutions are often far more affordable for equal or better capacity, and they also provide businesses the flexibility to start small and scale.
Hadoop
Hadoop is an open-source platform that is entirely free of cost.
However, there are various costs of Hadoop clusters that perform different parallel tasks on the given data sets.
If we talk about the cost of each group depends on its disk capabilities, with a total node cost of around $1,000-2,000 per TB.
SQL
SQL is also an open-source platform that is entirely free of cost.
But this is only for primary use. Setting up extra SQL features costs more. For example, RDMS uses SQL languages that involve cost in its setup.
Its price can reach thousands of dollars annually if taken in operation properly.
Conclusion
In this article, we have covered the significant critical differences between Hadoop and SQL.
Both these tools help in managing the data but in a unique way.
Hadoop is a framework, while SQL is a programming language. Both these tools have their pros and cons.
Hadoop can handle large sets of data but can write data only once. However, SQL is easy to work with but challenging in terms of scale.
However, which tools best suit you depends on what type of company, what kind of data to handle, your investment, etc.
At RestApp, we’re building a Data Activation Platform for modern data teams.
We have designed our next-gen data modeling editor to be intuitive and easy to use.
If you’re interested in starting with connecting all your favorite tools, check out the RestApp website or try it for free with a sample dataset.
Discover the next-gen end-to-end data pipeline platform with our built-in No Code SQL, Python and NoSQL functions. Data modeling has never been easier and safer thanks to the No Code revolution, so you can simply create your data pipelines with drag-and-drop functions and stop wasting your time by coding what can now be done in minutes!Â
Discover Data modeling without code with our 14-day free trial!
Category
Subscribe to our newsletter
Related articles
SQL
Top 5 SQL challenges preventing you from mastering it – Feedback from 100+ Data professionals!
Brian Laleye
July 19, 2022
 · 12 min read
NO CODE / LOW CODE, SQL
What are Window functions and How to use them properly in Low/No-Code? A full guide with Examples
Brian Laleye
June 28, 2022
 · 8 min read
AUTOMATION, NO CODE / LOW CODE, SQL
Top 10 SQL functions to clean your data in No Code. A Complete Guide with Examples
Othmane Lamrani
May 3, 2022
 · 13 min read
Build better data pipelines
With RestApp, be your team’s data hero by activating insights from raw data sources.